Statistics S2 Mark scheme

Question	Scheme	Marks			
1(a)	X~Po(3.2)	B1			
	$P(X=3) = \frac{e^{-3.2} 3.2^3}{3!}$	M1			
	= 0.2226 awrt 0.223	A1			
		(3)			
(b)	<i>Y</i> ~Po(1.6)	B1			
	$P(Y \ge 1) = 1 - P(Y = 0)$	M1			
	$= 1 - e^{-1.6}$				
	= 0.7981 awrt 0.798	A1			
		(3)			
(c)	X~Po(0.8)				
	$\frac{P(X=1) \times P(X=3)}{P(Y=4)} = \frac{\left(e^{-0.8} \times 0.8\right) \times \left(\frac{e^{-0.8} 0.8^3}{3!}\right)}{\frac{e^{-1.6} 1.6^4}{4!}}$	M1 M1 M1 A1			
	$1 + 1 = 0.3594 \times 0.0383$				
	$=\frac{0.5334\times0.0585}{0.05513}$				
	= 0.25				
		(5)			
(d)	$A \sim Po(72)$ approximated by N(72,72)	B1			
	$\frac{5000}{60} = 83.33$	M1			
	$P(A \ge 84) = P\left(Z \ge \frac{83.5 - 72}{\sqrt{72}}\right)$	M1 M1			
	$= P(Z \ge 1.355)$				
	= 0.0869 awrt $0.087/0.088$	A1			
		(5)			
	(1	6 marks)			
Notes:					
(a) B1 • For	writing or using $P_0(3,2)$				
M1. $e^{-\lambda}$	λ^3				
3	!				
(b) B1: For	writing or using Po(1.6)				
M1: 1 –	$-P(Y=0) \text{ or } 1 - e^{-\lambda}$				

Question 1 notes continued

(c) M1: Using Po(0.8) with X=1 or X=3 (may be implied by 0.359... or 0.0383...) $\left(e^{-\lambda} \times \lambda\right) \times \left(\frac{e^{-\lambda}\lambda^3}{3!}\right)$ (consistent lambda) awrt 0.0138 implies 1st 2 M marks M1: Correct use of conditional probability with denominator $=\frac{e^{-1.6}1.6^4}{4!}$ M1: Fully correct expression A1: 0.25 (allow awrt 0.250) A1: **(d) B1:** Writing or using N(72,72)For exact fraction or awrt 83.3 (may be implied by 84) M1: (Note: Use of N(4320,4320) can score B1 and 1st M1) M1: Using 84 +/- 0.5 Standardising using 82.5, 83, 83.3 (awrt 83.3), 83.5, 83.8, 84 or 84.5, 'their mean' and 'their **M1**: sd'

Question	Scheme	Marks
2(a)	P(X > 4) = 1 - F(4)	M1
	$=1-\frac{3}{5}$	
	$=\frac{2}{5}$ oe	A1
		(2)
(b)	1	B1
		(1)
(c)	$f(x) = \frac{dF(x)}{dx} = \frac{1}{5}$	M1
	$f(x) = \begin{cases} \frac{1}{5} & 1 \le x \le 6\\ 0 & \text{otherwise} \end{cases}$	A1
		(2)
(d)	E(X) = 3.5	B1
		(1)
(e)	Variance = $\frac{(6-1)^2}{12}$ or $\int_1^6 \frac{1}{5} x^2 dx - (3.5)^2$	M1
	$=\frac{25}{12}$ awrt 2.08	A1
		(2)
(f)	$E(X^{2}) = Var(X) + [E(X)]^{2}$ = $\frac{25}{12} + 3.5^{2}$ or $\int_{1}^{6} \frac{1}{5} x^{2} dx$ or $\int_{1}^{6} \frac{1}{5} (3x^{2} + 1) dx$ = $\frac{43}{3}$	M1
	$E(3X^{2}+1) = 3 E(X^{2}) + 1 = \left[\frac{3x^{3}}{15} + \frac{x}{5}\right]_{1}^{6}$	dM1
	= 44 = 44	Alcao
		(3)
	(1	1 marks)
Notes:		
(a) M1: Writ	ting or using $1 - F(4)$ o.e.	
(c)	1	
M1: For	differentiating to get $\frac{1}{5}$	

Question 2 notes continued			
A1:	Both lines correct with ranges		
(e)			
M1:	$\frac{(6-1)^2}{12} \text{ or } \int_1^6 \frac{1}{5} x^2 dx - \text{`their } 3.5^{2}$		
(f)			
M1:	"Their Var(X)" + ["their E(X)"] ² (which must follow from the 1 st method in (e))		
	<u>or</u> $\int_{1}^{6} \frac{1}{5} x^2 dx$ and integrating $x^n \to \frac{x}{n+1}$ (may be seen in (e)) <u>or</u> writing $\int_{1}^{6} \frac{1}{5} (3x^2+1) dx$		
	(May be implied by $\frac{43}{3}$ seen)		
dM1:	Using 3 × 'their E(X ²)' + 1 or $\int_{1}^{6} \frac{1}{5} (3x^2 + 1) dx$ and integrating $x^n \rightarrow \frac{x^{n+1}}{n+1}$		

Question	Scheme	Marks				
3 (a)	(A random variable) that is a function of a (random) sample involving no					
	unknown quantities/parameters					
	or	B1				
	A quantity calculated solely from a random sample					
		(1)				
(b)	If all possible samples are chosen from a population;					
	then the values of a statistic and the associated probabilities is a sampling distribution	B1				
	or a probability distribution of a statistic					
		(1)				
(c)	Mean = $100 \times \frac{4}{7} + 200 \times \frac{3}{7}$					
	$=\frac{1000}{7}$ awrt 143	B1				
	Variance = $100^2 \times \frac{4}{7} + 200^2 \times \frac{3}{7} - \left(\frac{1000}{7}\right)^2$	M1				
	$=\frac{120000}{49}$ awrt 2450 (to 3sf)	A1				
		(3)				
(d)	(100,100,100)	-				
	(100,100,200) (100,200,100) (200,100,100) or 3 x (100,100,200)	B2				
	(100,200,200) (200,100,200) (200,200,100) or 3 x (100,200,200)	-				
	(200,200,200)	(2)				
(e)	(100,100,100) $\left(\frac{4}{4}\right)^3 = \frac{64}{2}$ awrt 0.187	(2)				
	(7) 343	-				
	(200,200,200) $\left(\frac{3}{7}\right)^3 = \frac{27}{343}$ awrt 0.0787	B1 both				
	(100,100,200) $3 \times \left(\frac{4}{7}\right)^2 \times \left(\frac{3}{7}\right) = \frac{144}{343}$ awrt 0.420 (allow 0.42)	M1				
	(100,200,200) $3 \times \left(\frac{4}{7}\right) \times \left(\frac{3}{7}\right)^2 = \frac{108}{343}$ awrt 0.315	A1				

Ques	tion			Scheme			Marks
3(e) continued		m	100	$400/_{3}$ awrt 133	500/3 awrt 167	200	
		$\mathbf{P}(M=m)$	$\frac{64}{343} \text{ or}$ awrt 0.187	$\frac{144}{343}$ or awrt 0.420 (allow 0.42)	$\frac{108}{343} \text{ or}$ awrt 0.315	$\frac{27}{343}$ or awrt 0.0787	A1
							(4)
						(1	1 marks)
Notes:	:						
(a) B1:	 (a) B1: For a definition which includes each of the following 3 aspects A function¹ of a (random) sample² involving no unknown quantities/parameters³ 1. function/quantity/calculation/value/random variable 2. sample/observations/data 3. no unknown parameters/no unknown values/solely (from a sample) 						
(b) B1:	Requires all underlined words: <u>All values</u> of a <u>statistic</u> with their associated <u>probabilities</u> or probability distribution of a statistic						
(c)							
M1:	100 ²	$\times \frac{4}{7} + 200^2 \times \frac{3}{7} -$	$(\text{their mean})^2$				
(d) B1: B1:	Any 2 of (100,100,100), (100,100,200) any order, (100,200,200) any order, (200,200,200) All correct, allow 3 × (100,100,200) and 3 × (100,200,200) and (100,100,100) and (200,200,200) (Note: Allow other notation for 100 and 200 e.g. Small and Large)						
(e) B1: M1:) 1: Both probabilities for (100,100,100) and (200,200,200) correct						
A1: A1:	Either correct All means correct and all probabilities correct (table not required but means must be associated with correct probabilities)						

Quest	tion	Scheme	Marks	
4(a	(a) $X \sim Po(6)$		M1	
	$P(5 \le X < 7) = P(X \le 6) - P(X \le 4)$ or $\frac{e^{-6}6^5}{5!} + \frac{e^{-6}6^6}{6!}$		M1	
		= 0.6063 - 0.2851		
		= 0.3212 awrt 0.321	A1	
			(3)	
(b))	$H_0: \lambda = 9 \qquad H_1: \lambda < 9$	B1	
		$X \sim Po(9)$ therefore		
		$P(X \le 4) = 0.05496 \text{ or CR } X \le 3$	B1	
		Insufficient evidence to reject H_0 or Not Significant or 4 does not lie in the critical region.	dM1	
	There is no evidence that the mean number of <u>accidents</u> at the crossroads has <u>reduced/decreased</u> .		Alcso	
			(4)	
		(*	7 marks)	
Notes:	:			
(a)				
M1:	Writ	ing or using Po(6)		
M1:	Either $P(X \le 6) - P(X \le 4)$ or $\frac{e^{-\lambda}\lambda^5}{5!} + \frac{e^{-\lambda}\lambda^6}{6!}$			
(b)				
B1:	Both hypotheses correct (λ or μ) allow 0.5 instead of 9			
B1:	Either awrt 0.055 or critical region $X \le 3$			
dM1:	For	a correct comment (dependent on previous B1)		
	Con	tradictory non-contextual statements such as "not significant" so "reject H_0 " sco	re M0.	
	(Mag	y be implied by a correct contextual statement)	. .	
A1:	Cso requires correct contextual conclusion with underlined words and all previous marks in (b) to be scored.			

Question	Scheme	Marks			
5(a)	$\int_{-1}^{2} k(x^{2} + a) dx + \int_{2}^{3} 3k dx = 1$	M1			
	$\left[k \left(\frac{x^3}{3} + ax \right) \right]_{-1}^2 + \left[3kx \right]_{2}^3 = 1$	dM1			
	$k\left(\frac{8}{3} + 2a + \frac{1}{3} + a\right) + 9k - 6k = 1$	A1			
	6k + 3ak = 1				
	$\int_{-1}^{2} k(x^{3} + ax) dx + \int_{2}^{3} 3kx dx \left[= \frac{17}{12} \right]$	M1			
	$\left[k\left(\frac{x^{4}}{4} + \frac{ax^{2}}{2}\right)\right]_{-1}^{2} + \left[\frac{3kx^{2}}{2}\right]_{2}^{3} = \frac{17}{12}$	dM1			
	$k\left(4+2a-\frac{1}{4}-\frac{a}{2}\right)+\frac{27k}{2}-6k=\frac{17}{12}$	A1			
	$\frac{45k}{4} + \frac{3ak}{2} = \frac{17}{12}$				
	135k + 18ak = 17 99k = 11	ddM1			
	$a = 1, k = \frac{1}{9}$	A1			
		(8)			
(b)	2	B1			
		(1)			
Natara		9 marks)			
Notes:					
(a) M1. W-	ting or using $\int_{-\infty}^{2} h(u^{2} + a) du + \int_{-\infty}^{3} 2h du = 1$ is a set limit.				
WII: writing or using $\int_{-1}^{1} k(x^2 + a) dx + \int_{2}^{2} 3k dx = 1$ ignore limits.					
dM1: Attempting to integrate at least one $x^n \rightarrow \frac{x}{n+1}$ and sight of correct limits (dependent on					
previous M1).					
A1: Correct equation – need not be simplified.					
M1: \int_{-1}^{2}	M1: $\int_{-1}^{2} k(x^3 + ax) dx + \int_{2}^{3} 3kx dx$ ignore limits.				
dM1: Set	ing $=\frac{17}{12}$ and attempting to integrate at least one $x^n \to \frac{x^{n+1}}{n+1}$ and sight of corre	ct limits			
(dep	endent on previous M1).				

Question 5 notes *continued*

A1: A correct equation – need not be simplified.

ddM1: Attempting to solve two simultaneous equations in *a* and *k* by eliminating 1 variable (dependent on 1^{st} and 3^{rd} M1s).

A1: Both *a* and *k* correct.

Questi	on Scheme	Marks				
6(a)	$P(X=5) = {}^{20}C_5(0.3)^5(0.7)^{15}$ or $0.4164 - 0.2375$	M1				
	= 0.17886 awrt 0.179					
(b)	$(b) \qquad Mean = 6$					
	$sd = \sqrt{20 \times 0.7 \times 0.3}$					
	= 2.049 awrt 2.05	A1				
		(3)				
(c)	$H_0: p = 0.3$ $H_1: p > 0.3$	B1				
	X ∼B(20,0.3)	M1				
	$P(X \ge 8) = 0.2277$ or $P(X \ge 10) = 0.0480$, so $CR X \ge 10$	A1				
	Insufficient evidence to reject H_0 or Not Significant or 8 does not lie in the critical region.	dM1				
	There is no evidence to support the <u>Director (of Studies')</u> <u>belief</u> /There is no evidence that the <u>proportion</u> of <u>parents</u> that <u>do not support</u> the <u>new</u> <u>curriculum</u> is greater than 30%	A1 cso				
(d) $X \sim B(2n, 0.25)$						
	$X \sim B(8, 0.25) P(X \ge 4) = 0.1138$	M1				
	$X \sim B(10, 0.25) P(X \ge 5) = 0.0781$					
	2n = 10	A1				
	<i>n</i> = 5	A1				
		(3)				
	(1	3 marks)				
Notes:						
(a) M1·	${}^{0}C_{*}(n)^{5}(1-n)^{15}$ or using $P(X < 5) - P(X < 4)$					
(h)						
(b) M1:	Use of $20 \times 0.7 \times 0.3$ (with or without the square root).					
(c)						
B1:	Both hypotheses correct (p or π).					
M1:	Using $X \sim B(20,0.3)$ (may be implied by 0.7723, 0.2277, 0.8867 or 0.1133)					
AI: A dM1.	Awrt 0.228 or CR $X \ge 10$					
A1:	Cso requires correct contextual conclusion with underlined words and all previous marks in					
((c) to be scored.					

Question 6 notes continued

(d)

- M1: For 0.1138 or 0.0781 or 0.8862 or 0.9219 seen.
- A1: B(10, 0.25) selected (may be implied by n = 10 or 2n = 10 or n = 5). An answer of 5 with no incorrect working seen scores 3 out of 3. Special Case: Use of a normal approximation.
- M1: For $\frac{(n-0.5)-\frac{n}{2}}{\sqrt{\frac{3}{8}n}} = z$ with $1.28 \le z \le 1.29$, 1^{st} A1 for n=4.2/4.3, 2^{nd} A1 for n=5

Question	Scheme	Marks		
7	$\mathbf{Y} \sim \mathrm{N}\left(\frac{n}{5}, \frac{4n}{25}\right)$	B1		
	P(Y≥30) =P $\left(Z > \frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}}\right)$	M1 M1 A1		
	$\frac{\frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}} = 2$	B1		
	$n + 4\sqrt{n} - 147.5 = 0$ or $0.04n^2 - 12.44n + 870.25 = 0$	dM1		
	$\sqrt{n} = 10.3$ $n = 106.26$ or $n = 204.73$	A1		
	n = 106	A1 cao		
		8 marks)		
Notes:				
B1: Writing or using N $\left(\frac{n}{5}, \frac{4n}{25}\right)$				

M1: Writing or using 30 ± 0.5

M1: Standardising using 29, 29.5, 30 or 30.5 and their mean and their sd

A1: Fully correct standardisation (allow +/-)

B1: For z = +/-2 or awrt 2.00 must be compatible with their standardisation

dM1: (Dependent on 2nd M1) getting quadratic equation **and** solving leading to a value of \sqrt{n} or *n*

A1: Awrt 10.3 or awrt (106 or 107 or 204 or 205)

A1: For 106 only (must reject other solutions if stated)

(Note: $\frac{29.5 - n/5}{\frac{2}{5}\sqrt{n}} = -2$ leading to an answer of 106 may score B1M1M1A1B0M1A1A1)