Statistics S2 Mark scheme

Question	Scheme	Marks
1(a)	$X \sim \operatorname{Po}(3.2)$	B1
	$\mathrm{P}(X=3)=\frac{\mathrm{e}^{-3.2} 3.2^{3}}{3!}$	M1
	$=0.2226$ awrt 0.223	A1
		(3)
(b)	$Y \sim \operatorname{Po}(1.6)$	B1
	$\begin{aligned} \mathrm{P}(Y \geq 1) & =1-\mathrm{P}(Y=0) \\ & =1-\mathrm{e}^{-1.6} \end{aligned}$	M1
	$=0.7981 \quad$ awrt 0.798	A1
		(3)
(c)	$X \sim \operatorname{Po}(0.8)$	
	$\begin{aligned} \frac{\mathrm{P}(X=1) \times \mathrm{P}(X=3)}{\mathrm{P}(Y=4)} & =\frac{\left(\mathrm{e}^{-0.8} \times 0.8\right) \times\left(\frac{\mathrm{e}^{-0.8} 0.8^{3}}{3!}\right)}{\frac{\mathrm{e}^{-1.6} 1.6^{4}}{4!}} \\ & =\frac{0.3594 \times 0.0383}{0.05513} \end{aligned}$	$\begin{aligned} & \text { M1 M1 } \\ & \text { M1 A1 } \end{aligned}$
	$=0.25$	A1
		(5)
(d)	$A \sim \operatorname{Po}(72)$ approximated by $\mathrm{N}(72,72)$	B1
	$\frac{5000}{60}=83.33$	M1
	$\mathrm{P}(A \geq 84)=\mathrm{P}\left(Z \geq \frac{83.5-72}{\sqrt{72}}\right)$	M1 M1
	$=\mathrm{P}(Z \geq 1.355 \ldots)$	
	$=0.0869 \quad$ awrt 0.087/0.088	A1
		(5)
(16 marks)		
Notes:		
(a) B1: For writing or using $\operatorname{Po}(3.2)$ M1: $\frac{\mathrm{e}^{-\lambda} \lambda^{3}}{3!}$		
(b) B1: For writing or using $\operatorname{Po}(1.6)$ M1: $\quad 1-\mathrm{P}(Y=0)$ or $1-\mathrm{e}^{-\lambda}$		

Question 1 notes continued

(c)

M1: Using $\operatorname{Po}(0.8)$ with $X=1$ or $X=3$ (may be implied by $0.359 \ldots$ or $0.0383 \ldots$...)
M1: $\quad\left(\mathrm{e}^{-\lambda} \times \lambda\right) \times\left(\frac{\mathrm{e}^{-\lambda} \lambda^{3}}{3!}\right)\left(\right.$ consistent lambda) awrt 0.0138 implies $1^{\text {st }} 2 \mathrm{M}$ marks
M1: Correct use of conditional probability with denominator $=\frac{\mathrm{e}^{-1.6} 1.6^{4}}{4!}$
A1: Fully correct expression
A1: $\quad 0.25$ (allow awrt 0.250)
(d)

B1: \quad Writing or using $\mathrm{N}(72,72)$
M1: For exact fraction or awrt 83.3 (may be implied by 84) (Note: Use of $\mathrm{N}(4320,4320)$ can score B1 and $1^{\text {st }} \mathrm{M} 1$)
M1: Using $84+/-0.5$
M1: Standardising using $82.5,83,83 . \dot{3}$ (awrt 83.3), $83.5,83.8,84$ or 84.5 , 'their mean' and 'their sd'

Question 2 notes continued

A1: Both lines correct with ranges
(e)

M1: $\frac{(6-1)^{2}}{12}$ or $\int_{1}^{6} \frac{1}{5} x^{2} \mathrm{~d} x-$ 'their $3.5^{, 2}$
(f)

M1: "Their $\operatorname{Var}(X)$ " $+[\text { "their } \mathrm{E}(X) \text { " }]^{2}$ (which must follow from the $1^{\text {st }}$ method in (e)) or $\int_{1}^{6} \frac{1}{5} x^{2} \mathrm{~d} x$ and integrating $x^{n} \rightarrow \frac{x^{n+1}}{n+1}\left(\right.$ may be seen in (e)) or writing $\int_{1}^{6} \frac{1}{5}\left(3 x^{2}+1\right) \mathrm{d} x$ (May be implied by $\frac{43}{3}$ seen)
dM1: Using $3 \times$ 'their $\mathrm{E}\left(X^{2}\right)^{\prime}+1$ or $\int_{1}^{6} \frac{1}{5}\left(3 x^{2}+1\right) \mathrm{d} x$ and integrating $x^{n} \rightarrow \frac{x^{n+1}}{n+1}$

Question	Scheme	Marks
3(a)	(A random variable) that is a function of a (random) sample involving no unknown quantities/parameters or A quantity calculated solely from a random sample	B1
		(1)
(b)	If all possible samples are chosen from a population;	B1
	then the values of a statistic and the associated probabilities is a sampling distribution	
	or a probability distribution of a statistic	
		(1)
(c)	$\begin{aligned} \text { Mean } & =100 \times \frac{4}{7}+200 \times \frac{3}{7} \\ & =\frac{1000}{7} \end{aligned}$ $\text { awrt } 143$	B1
	Variance $=100^{2} \times \frac{4}{7}+200^{2} \times \frac{3}{7}-\left(\frac{1000}{7}\right)^{2}$	M1
	$=\frac{120000}{49} \quad$ awrt 2450 (to 3sf)	A1
		(3)
(d)	(100,100,100)	B2
	$(100,100,200)(100,200,100)(200,100,100)$ or $3 \times(100,100,200)$	
	$(100,200,200)(200,100,200)(200,200,100)$ or $3 \mathrm{x}(100,200,200)$	
	(200,200,200)	
		(2)
(e)	$(100,100,100) \quad\left(\frac{4}{7}\right)^{3}=\frac{64}{343} \quad$ awrt 0.187	B1 both
	$(200,200,200) \quad\left(\frac{3}{7}\right)^{3}=\frac{27}{343} \quad$ awrt 0.0787	
	$(100,100,200) \quad 3 \times\left(\frac{4}{7}\right)^{2} \times\left(\frac{3}{7}\right)=\frac{144}{343} \quad$ awrt 0.420 (allow 0.42)	M1
	$(100,200,200) \quad 3 \times\left(\frac{4}{7}\right) \times\left(\frac{3}{7}\right)^{2}=\frac{108}{343} \quad$ awrt 0.315	A1

Question	Scheme	Marks
4(a)	$X \sim \operatorname{Po}(6)$	M1
	$\begin{aligned} \mathrm{P}(5 \leq X<7) & =\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 4) \quad \text { or } \frac{\mathrm{e}^{-6} 6^{5}}{5!}+\frac{\mathrm{e}^{-6} 6^{6}}{6!} \\ & =0.6063-0.2851 \end{aligned}$	M1
	$=0.3212$ awrt 0.321	A1
		(3)
(b)	$\mathrm{H}_{0}: \lambda=9 \quad \mathrm{H}_{1}: \lambda<9$	B1
	$X \sim \operatorname{Po}(9)$ therefore $\mathrm{P}(X \leq 4)=0.05496 \ldots$ or CR $X \leq 3$	B1
	Insufficient evidence to reject H_{0} or Not Significant or 4 does not lie in the critical region.	dM1
	There is no evidence that the mean number of accidents at the crossroads has reduced/decreased.	A1cso
		(4)
(7 marks)		
Notes:		
(a) M1: Writing or using $\operatorname{Po}(6)$ M1: Either $\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 4)$ or $\frac{\mathrm{e}^{-\lambda} \lambda^{5}}{5!}+\frac{\mathrm{e}^{-\lambda} \lambda^{6}}{6!}$		
(b) B1: Both hypotheses correct (λ or μ) allow 0.5 instead of 9 B1: Either awrt 0.055 or critical region $X \leq 3$ dM1: For a correct comment (dependent on previous B1) Contradictory non-contextual statements such as "not significant" so "reject H_{0} " score M0. (May be implied by a correct contextual statement) A1: Cso requires correct contextual conclusion with underlined words and all previous marks in (b) to be scored.		

5(a)	$\int_{-1}^{2} k\left(x^{2}+a\right) \mathrm{d} x+\int_{2}^{3} 3 k \mathrm{~d} x=1$	M1
	$\left[k\left(\frac{x^{3}}{3}+a x\right)\right]_{-1}^{2}+[3 k x]_{2}^{3}=1$	dM1
	$k\left(\frac{8}{3}+2 a+\frac{1}{3}+a\right)+9 k-6 k=1$	A1
	$\begin{aligned} & 6 k+3 a k=1 \\ & \int_{-1}^{2} k\left(x^{3}+a x\right) \mathrm{d} x+\int_{2}^{3} 3 k x \mathrm{~d} x\left[=\frac{17}{12}\right] \end{aligned}$	M1
	$\left[k\left(\frac{x^{4}}{4}+\frac{a x^{2}}{2}\right)\right]_{-1}^{2}+\left[\frac{3 k x^{2}}{2}\right]_{2}^{3}=\frac{17}{12}$	dM1
	$k\left(4+2 a-\frac{1}{4}-\frac{a}{2}\right)+\frac{27 k}{2}-6 k=\frac{17}{12}$	A1
	$\begin{aligned} & \frac{45 k}{4}+\frac{3 a k}{2}=\frac{17}{12} \\ & 135 k+18 a k=17 \\ & 99 k=11 \end{aligned}$	ddM1
	$a=1, k=\frac{1}{9}$	A1
		(8)
(b)	2	B1
		(1)
(9 marks)		

Notes:

(a)

M1: Writing or using $\int_{-1}^{2} k\left(x^{2}+a\right) \mathrm{d} x+\int_{2}^{3} 3 k \mathrm{~d} x=1 \quad$ ignore limits.
dM1: Attempting to integrate at least one $x^{n} \rightarrow \frac{x^{n+1}}{n+1}$ and sight of correct limits (dependent on previous M1).
A1: \quad Correct equation - need not be simplified.
M1: $\quad \int_{-1}^{2} k\left(x^{3}+a x\right) \mathrm{d} x+\int_{2}^{3} 3 k x \mathrm{~d} x$ ignore limits.
dM1: Setting $=\frac{17}{12}$ and attempting to integrate at least one $x^{n} \rightarrow \frac{x^{n+1}}{n+1}$ and sight of correct limits (dependent on previous M1).

Question 5 notes continued

A1: A correct equation - need not be simplified.
ddM1: Attempting to solve two simultaneous equations in a and k by eliminating 1 variable (dependent on $1^{\text {st }}$ and $3^{\text {rd }} \mathrm{M} 1 \mathrm{~s}$).
A1: Both a and k correct.

Question	Scheme	Marks
6(a)	$\mathrm{P}(X=5)={ }^{20} C_{5}(0.3)^{5}(0.7)^{15} \quad$ or $\quad 0.4164-0.2375$	M1
	$=0.17886 \ldots$ awrt 0.179	A1
		(2)
(b)	Mean $=6$	B1
	$\mathrm{sd}=\sqrt{20 \times 0.7 \times 0.3}$	M1
	$=2.049 \ldots$ awrt 2.05	A1
		(3)
(c)	$\mathrm{H}_{0}: p=0.3 \quad \mathrm{H}_{1}: p>0.3$	B1
	$X \sim \mathrm{~B}(20,0.3)$	M1
	$\mathrm{P}(X \geq 8)=0.2277 \quad$ or $\mathrm{P}(X \geq 10)=0.0480$, so $\mathrm{CR} X \geq 10$	A1
	Insufficient evidence to reject H_{0} or Not Significant or 8 does not lie in the critical region.	dM1
	There is no evidence to support the Director (of Studies') belief/There is no evidence that the proportion of parents that do not support the new curriculum is greater than 30%	A1 cso
		(5)
(d)	$X \sim \mathrm{~B}(2 n, 0.25)$	
	$X \sim \mathrm{~B}(8,0.25) \quad \mathrm{P}(X \geq 4)=0.1138$	M1
	$X \sim \mathrm{~B}(10,0.25) \mathrm{P}(X \geq 5)=0.0781$	
	$\begin{aligned} & 2 n=10 \\ & n=5 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$
		(3)
(13 marks)		
Notes:		
(a) M1: ${ }^{20} C_{5}(p)^{5}(1-p)^{15}$ or using $\mathrm{P}(X \leq 5)-\mathrm{P}(X \leq 4)$		
(b) M1: Use of $20 \times 0.7 \times 0.3$ (with or without the square root).		
(c) B1: Both hypotheses correct (p or π). M1: Using $X \sim \mathrm{~B}(20,0.3) \quad$ (may be implied by $0.7723,0.2277,0.8867$ or 0.1133) A1: Awrt 0.228 or $\mathrm{CR} X \geq 10$ dM1: A correct comment (dependent on previous M1) A1: Cso requires correct contextual conclusion with underlined words and all previous marks in (c) to be scored.		

Question 6 notes continued

(d)

M1: For 0.1138 or 0.0781 or 0.8862 or 0.9219 seen.
A1: $\quad \mathrm{B}(10,0.25)$ selected (may be implied by $n=10$ or $2 n=10$ or $n=5$).
An answer of 5 with no incorrect working seen scores 3 out of 3 .
Special Case: Use of a normal approximation.
M1: For $\frac{(n-0.5)-\frac{n}{2}}{\sqrt{\frac{3}{8} n}}=z$ with $1.28 \leq \mathrm{z} \leq 1.29,1^{\text {st }} \mathrm{A} 1$ for $n=4.2 / 4.3,2^{\text {nd }} \mathrm{A} 1$ for $n=5$

7

$Y \sim \mathrm{~N}\left(\frac{n}{5}, \frac{4 n}{25}\right)$	B1
$\mathrm{P}(Y \geq 30)=\mathrm{P}\left(Z>\frac{29.5-n / 5}{\frac{2}{5} \sqrt{n}}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
$\frac{29.5-n / 5}{\frac{2}{5} \sqrt{n}}=2$	B1
$n+4 \sqrt{n}-147.5=0 \quad$ or $\quad 0.04 n^{2}-12.44 n+870.25=0$	dM1
$\sqrt{n}=10.3 \ldots \quad n=106.26 \ldots$ or $n=204.73 \ldots$	A1
$n=106$	A1 cao
(8 marks)	

Notes:

B1: Writing or using $\mathrm{N}\left(\frac{n}{5}, \frac{4 n}{25}\right)$
M1: Writing or using $30+/-0.5$
M1: Standardising using 29, 29.5, 30 or 30.5 and their mean and their sd
A1: Fully correct standardisation (allow $+/-$)
B1: For $z=+/-2$ or awrt 2.00 must be compatible with their standardisation
dM1: (Dependent on $2^{\text {nd }} \mathrm{M} 1$) getting quadratic equation and solving leading to a value of \sqrt{n} or n
A1: Awrt 10.3 or awrt (106 or 107 or 204 or 205)
A1: For 106 only (must reject other solutions if stated)
(Note: $\frac{29.5-n / 5}{\frac{2}{5} \sqrt{n}}=-2$ leading to an answer of 106 may score B1M1M1A1B0M1A1A1)

